Regulatory Interplay between RNase III and Antisense RNAs in E. coli: the Case of AsflhD and FlhD, Component of the Master Regulator of Motility

mBio. 2022 Oct 26;13(5):e0098122. doi: 10.1128/mbio.00981-22. Epub 2022 Aug 24.

Abstract

In order to respond to ever-changing environmental cues, bacteria display resilient regulatory mechanisms controlling gene expression. At the post-transcriptional level, this is achieved by a combination of RNA-binding proteins, such as ribonucleases (RNases), and regulatory RNAs, including antisense RNAs (asRNAs). Bound to their complementary mRNA, asRNAs are primary targets for the double-strand-specific endoribonuclease, RNase III. Taking advantage of our own and previously published transcriptomic data sets obtained in strains inactivated for RNase III, we selected several candidate asRNAs and confirmed the existence of RNase III-sensitive asRNAs for crp, ompR, phoP, and flhD genes, all encoding global regulators of gene expression in Escherichia coli. Using FlhD, a component of the master regulator of motility (FlhD4C2), as our model, we demonstrate that the asRNA AsflhD, transcribed from the coding sequence of flhD, is involved in the fine-tuning of flhD expression and thus participates in the control of motility. IMPORTANCE The role of antisense RNAs (asRNAs) in the regulation of gene expression remains largely unexplored in bacteria. Here, we confirm that asRNAs can be part of layered regulatory networks, since some are found opposite to genes encoding global regulators. In particular, we show how an antisense RNA (AsflhD) to the flhD gene, encoding the transcription factor serving as the primary regulator of bacterial swimming motility (FlhD4C2), controls flhD expression, which in turn affects the expression of other genes of the motility cascade. The role of AsflhD highlights the importance of fine-tuning mechanisms mediated by asRNAs in the control of complex regulatory networks.

Keywords: E. coli; RNase III; asRNAs; flhD; motility; phoP; transcriptional attenuation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Gene Expression Regulation, Bacterial
  • RNA, Antisense / genetics
  • RNA, Messenger / metabolism
  • Ribonuclease III / genetics
  • Ribonuclease III / metabolism
  • Transcription Factors / metabolism

Substances

  • RNA, Antisense
  • Ribonuclease III
  • Transcription Factors
  • RNA, Messenger
  • Escherichia coli Proteins