LET spectra can be measured by track-etched detectors. However, these detectors are not able to identify the type of interacting particles. Monte Carlo simulations can provide this missing information. In this work, Monte Carlo simulations based on the EURADOS Work Group 9 experiment consisting of systematic 3D mapping of out-of-field doses and LET spectra in a prototype water phantom were performed. The simulations aimed to identify the types of particles contributing to the out-of-field LET spectra. The total absorbed dose, LET and energy spectra were calculated. The calculated dose distributions and LET spectra were compared with the ones measured by radiophotoluminiscence and track-etched detectors. The out-of-field particles and their LET values were identified. No statistically significant differences between the measured and simulated spectra were revealed in the LET range of 100-2000 keV μm-1.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].