Glycogen is an easily accessible source of energy for various processes. In hepatocytes, it can be found in the form of individual molecules (β-particles) and their agglomerates (α-particles). The glycogen content in hepatocytes depends on the physiological state and can vary due to the size and number of the particles. Using biochemical, cytofluorometric, interferometric and morphometric methods, the number of β-particles in rat hepatocytes was determined after 48 h of fasting at different time intervals after glucose refeeding. It has been shown that after starvation, hepatocytes contain ~1.6 × 108 β-particles. During refeeding, their number of hepatocytes gradually increases and reaches a maximum (~5.9 × 108) at 45 min after glucose administration, but then quickly decreases. The data obtained suggest that in cells there is a continuous synthesis and degradation of particles, and at different stages of life, one or another process predominates. It has been suggested that in the course of glycogenesis, pre-existing β-particles are replaced by those formed de novo. The main contribution to the deposition of glycogen is made by an increase in the glucose residue number in its molecules. The average diameter of β-particles of glycogen during glycogenesis increases from ~11 nm to 21 nm.
Keywords: glucose; glycogen; rat hepatocytes; refeeding; β-particles.