Development of Comprehensive Serological Techniques for Sensitive, Quantitative and Rapid Detection of Soybean mosaic virus

Int J Mol Sci. 2022 Aug 21;23(16):9457. doi: 10.3390/ijms23169457.

Abstract

Soybean is an important grain and oil crop worldwide; however, the yield and seed quality of which are seriously affected by Soybean mosaic virus (SMV). As efficient detection technology is crucial for the field management of SMV, novel immunological detection methods were developed in the present study. According to the phylogenetic analysis, the CP coding sequence of SMV-SC7 was selected for the prokaryotic expression of the recombinant SMV-CP. Purified SMV-CP was used for the development of polyclonal antibodies (PAb) against the SMV-CP (PAb-SMV-CP) and monoclonal antibodies (MAb) against SMV-CP (MAb-SMV-CP). Subsequently, the PAb-SMV-CP was used for the development of a novel DAS- quantitative ELISA (DAS-qELISA) kit, of which the sensitivity was greater than 1:4000, and this could be used for the quantitative detection of SMV in China. Meanwhile, the MAb-SMV-CP was labeled with colloidal gold, and then was used for the development of the SMV-specific gold immunochromatography strip (SMV-GICS). The SMV-GICS gives accurate detection results through observed control lines and test lines in 5 to 10 min, sharing the same sensitivity as RT-PCR, and can be used for rapid, accurate and high-throughput field SMV detection. The DAS-qELISA kit and the SMV-GICA strip developed in this study are SMV-specific, sensitive, cheap and easy to use. These products will be conducive to the timely, efficient SMV epidemiology and detection in major soybean-producing regions in China and abroad.

Keywords: DAS-qELISA; MAb-SMV-CP; PAb-SMV-CP; SMV-CP; SMV-GICS; Soybean mosaic virus.

MeSH terms

  • Glycine max / genetics
  • Phylogeny
  • Plant Diseases*
  • Potyvirus* / genetics

Supplementary concepts

  • Soybean mosaic virus