Mitochondria are key cellular organelles responsible for many essential functions, including ATP production, ion homeostasis and apoptosis induction. Recent studies indicate their significant role during viral infection. In the present study, we examined the effects of equine herpesvirus type 1 (EHV-1) infection on the morphology and mitochondrial function in primary murine neurons in vitro. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). The organization of the mitochondrial network during EHV-1 infection was assessed by immunofluorescence. To access mitochondrial function, we analyzed reactive oxygen species (ROS) production, mitophagy, mitochondrial inner-membrane potential, mitochondrial mass, and mitochondrial genes' expression. Changes in mitochondria morphology during infection suggested importance of their perinuclear localization for EHV-1 replication. Despite these changes, mitochondrial functions were preserved. For all tested EHV-1 strains, the similarities in the increased fold expression were detected only for COX18, Sod2, and Tspo. For non-neuropathogenic strains (Jan-E and Rac-H), we detected mainly changes in the expression of genes related to mitochondrial morphology and transport. The results indicate that mitochondria play an important role during EHV-1 replication in cultured neurons and undergo specific morphological and functional modifications.
Keywords: EHV-1; ROS; mitochondria; mitophagy; neuronal cell culture.