Analyzing the impact of a real-life outbreak simulator on pandemic mitigation: An epidemiological modeling study

Patterns (N Y). 2022 Aug 12;3(8):100572. doi: 10.1016/j.patter.2022.100572.

Abstract

An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.

Keywords: Bluetooth contact sensing; epidemiology; modeling; network analysis; outbreak science; outbreak simulation; pandemic mitigation.