Cropland soils are considered to have the potential to sequester carbon (C). Warming can increase soil organic C (SOC) by enhancing primary production, but it can also cause carbon release from soils. However, the role of warming in governing cropland SOC dynamics over broad geographic scales remains poorly understood. Using over 4000 soil samples collected in the 1980s and 2010s across the Sichuan Basin of China, this study assessed the warming-induced cropland SOC change and the correlations with precipitation, cropland type and soil type. Results showed mean SOC content increased from 11.10 to 13.85 g C kg-1. Larger SOC increments were observed under drier conditions (precipitation < 1050 mm, dryland and paddy-dryland rotation cropland), which were 1.67-2.23 times higher than under wetter conditions (precipitation > 1050 mm and paddy fields). Despite the significant associations of SOC increment with crop productivity, precipitation, fertilization, cropland type and soil type, warming also acted as one of major contributors to cropland SOC change. The SOC increment changed parabolically with the rise in temperature increase rate under relatively drier conditions, while temperature increase had no impact on cropland SOC increment under wetter conditions. Meanwhile, the patterns of the parabolical relationship varied with soil types in drylands, where the threshold of temperature increase rate, the point at which the SOC increment switched from increasing to decreasing with warming, was lower for clayey soils (Ali-Perudic Argosols) than for sandy soils (Purpli-Udic Cambosols). These results illustrate divergent responses of cropland SOC to warming under different environments, which were contingent on water conditions and soil types. Our findings emphasize the importance of formulating appropriate field water management for sustainable C sequestration and the necessity of incorporating environment-specific mechanisms in Earth system models for better understanding of the soil C-climate feedback in complex environments.
Keywords: Climate warming; Cropland soil organic carbon change; Cropland type; Precipitation; Sichuan Basin; Soil type.
Copyright © 2022 Elsevier B.V. All rights reserved.