Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore

Nat Commun. 2022 Aug 30;13(1):5113. doi: 10.1038/s41467-022-32800-4.

Abstract

Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/β anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chondroitin Sulfates / chemistry
  • Dermatan Sulfate / analysis
  • Dermatan Sulfate / chemistry
  • Glycosaminoglycans* / chemistry
  • Nanopores*
  • Polysaccharides / analysis
  • Sulfates

Substances

  • Glycosaminoglycans
  • Polysaccharides
  • Sulfates
  • Dermatan Sulfate
  • Chondroitin Sulfates