Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimizing bioelectronics, recent research has focused on utilizing machine learning (ML) to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating ML into bioelectronics, aiding in a multitude of areas, such as material development, fabrication process optimization, and system integration. First, discussing how ML has aided in the material development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in ML to accurately optimize fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how ML can greatly assist in the analysis of complex, nonlinear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilizing ML with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and ML could hopefully build a strong foundation for this research field, promoting smart optimization together with effective use of ML to further enhance the effectiveness of such applications. Impact statement The article serves to give insight about the use of the machine learning (ML) techniques in the field of bioelectronics, since bioelectronics and ML are two distinct fields. This article allows bioelectronics researcher to get to know the latest advancement in the ML field. On the other hand, the article provides an insight to the ML researchers about how ML techniques can be useful in bioelectronics applications.
Keywords: 3D printing; bioprinting; data science; integrated system.