FMRP, the fragile X mental retardation protein coded by the FMR1 gene, is an RNA-binding protein that assists transport, stabilization and translational regulation of specific synaptic mRNAs. Its expression has been found in multiple cell types of central nervous system (CNS) including glial cells where its involvement in glutamate neurotransmitter homeostasis have been shown. Indeed, glutamate homeostasis deficit has been observed in absence of FMRP in-vivo in cortex and hippocampus structures as well as in vitro on astroglial cell culture. Interestingly, the retina which is an extension of the CNS is presenting electrophysiological alterations in absence of FMRP in both human and murine models suggesting neurotransmitter impairments. Therefore, we investigate the consequences of Fmrp absence on Glutamate-Glutamine cycle in whole retinas and primary retinal Müller cells culture which are the main glial cells of the retina. Using the Fmr1-/y mice, we have shown in vivo and in vitro that the absence of Fmrp in Müller cells is characterized by loss of Glutamate-Glutamine cycle homeostasis due to a lower Glutamine Synthetase protein expression and activity. The lack of Fmrp in the retina induces a reduced flow of glutamine synthesis. Our data established for the first time in literature a direct link between the lack of Fmrp and neurotransmitter homeostasis in the retina.
Keywords: Fragile X syndrome; Glutamate; Glutamine; Müller cells; Vision.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.