The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly

PLoS Biol. 2022 Sep 7;20(9):e3001782. doi: 10.1371/journal.pbio.3001782. eCollection 2022 Sep.

Abstract

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane
  • Centrioles / chemistry
  • Centrioles / metabolism*
  • Cilia / metabolism
  • Cilia / ultrastructure*
  • Mammals
  • Paramecium / chemistry
  • Paramecium / cytology
  • Paramecium / metabolism*

Grants and funding

The present work has benefited from Imagerie‐Gif core facility supported by I’Agence Nationale de la Recherche (ANR-11-EQPX-0029/Morphoscope, ANR-10-INBS-04/FranceBioImaging; ANR‐11‐IDEX‐0003‐02/ Saclay Plant Sciences). This work has been founded by “Basal body anchoring in ciliogenesis: structure-function analysis: ANR-15-CE11-0002-01” to AMT. PLB was supported by PhD fellowships from Université Paris-Saclay (https://www.paris-saclay.fr/). This work has been supported by the Fondation “ARC pour la recherche sur le cancer” to PLB ARCDOC4202003000178 and by the Swiss National Science Foundation (SNSF) PP00P3_187198 and by the European research Council ERC ACCENT StG 715289 attributed to PG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.