Background: Blood pressure (BP) exhibits seasonal variations, with peaks reported in winter. However, the association between seasonal variations and blood pressure variability in patients with new-onset essential hypertension is not fully understood. This study evaluated the potential association of seasonal variations with new-onset essential hypertension.
Methods: This retrospective observational study recruited a total of 440 consecutive patients with new-onset essential hypertension who underwent 24-h ambulatory electrocardiograph (ECG) and BP measurement at our department between January 2019 and December 2019. Demographic and baseline clinical data including BP variability, heart rate variability, and blood tests were retrieved. Multivariate linear regression analysis was performed to identify factors independently associated with mean BP and BP variability.
Results: Among the 440 patients recruited, 93 cases were admitted in spring, 72 in summer, 151 in autumn, and 124 in winter. Univariate analysis revealed that systolic BP (SBP), diastolic BP (DBP), high-sensitivity C-reactive protein, SBP drop rate, DBP drop rate, 24-h standard deviation of SBP, 24-h standard deviation of DBP, 24-h SBP coefficient of variation, and 24-h DBP coefficient of variation were associated with patients admitted in winter (P < 0.05 for all). Multivariate linear regression analysis showed that winter was the influencing factor of 24-h standard deviation of SBP (B = 1.851, t = 3.719, P < 0.001), 24-h standard deviation of DBP (B = 1.176, t = 2.917, P = 0.004), 24-h SBP coefficient of variation (B = 0.015, t = 3.670, P < 0.001), and 24-h DBP coefficient of variation (B = 0.016, t = 2.849, P = 0.005) in hypertensive patients.
Conclusions: Seasonal variations are closely associated with BP variability in patients with new-onset essential hypertension. Our study provides insight into the underlying pathogenesis of new-onset essential hypertension.
Keywords: Blood pressure variability; Essential hypertension; Heart rate variability; Seasonal variations.
© 2022. The Author(s).