A novel and low-cost framework for food traceability, composed by commercial and proprietary sensing devices, for the remote monitoring of air, water, soil parameters and herbicide contamination during the farming process, has been developed and verified in real crop environments. It offers an integrated approach to food traceability with embedded systems supervision, approaching the problem to testify the quality of the food product. Moreover, it fills the gap of missing low-cost systems for monitoring cropping environments and pesticides contamination, satisfying the wide interest of regulatory agencies and final customers for a sustainable farming. The novelty of the proposed monitoring framework lies in the realization and the adoption of a fully automated prototype for in situ glyphosate detection. This device consists of a custom-made and automated fluidic system which, leveraging on the Molecularly Imprinted Polymer (MIP) sensing technology, permits to detect unwanted glyphosate contamination. The custom electronic mainboard, called ElectroSense, exhibits both the potentiostatic read-out of the sensor and the fluidic control to accomplish continuous unattended measurements. The complementary monitored parameters from commercial sensing devices are: temperature, relative humidity, atmospheric pressure, volumetric water content, electrical conductivity of the soil, pH of the irrigation water, total Volatile Organic Compounds (VOCs) and equivalent CO2. The framework has been validated during the olive farming activity in an Italian company, proving its efficacy for food traceability. Finally, the system has been adopted in a different crop field where pesticides treatments are practiced. This has been done in order to prove its capability to perform first level detection of pesticide treatments. Good correlation results between chemical sensors signals and pesticides treatments are highlighted.
Keywords: Agriculture 4.0; ICT for sensor networks; Industry 4.0; Internet of Things; food traceability; glyphosate low-cost detection; model based system engineering.