Hollow hetero-nanosheet arrays have attracted great attention due to their efficient catalytic abilities for water splitting. We successfully fabricated ZIF-67-derived hollow CoMoS3.13/MoS2 nanosheet arrays on carbon cloth in situ through a two-step heating-up hydrothermal method, in which the MoS2 nanosheets were suitably distributed on the surface of the hollow CoMoS3.13 nanosheet arrays. There was a distinct synergistic effect between CoMoS3.13 and MoS2, and a large number of defective and disordered interfaces were formed, which improved the charge transfer rate and provided abundant electrochemical active sites. CMM 0.5, with the optimal Mo doping concentration of 0.5 mmol, exhibited the best catalytic properties. The overpotential values of CMM 0.5 at 10 mA cm-2 were only 107 and 169 mV for the HER and OER, respectively, and it had nearly 100% faradaic efficiency. A dual-electrode electrolytic cell assembled with CMM 0.5 required a voltage of only 1.507 V at 10 mA cm-2 for overall water splitting, and it displayed remarkable long-term durable bifunctional stability.