Nucleic acid nanotechnologies based on toehold-mediated strand displacement are ideally suited for single-nucleotide variations (SNVs) detection. But only a limited number of means could be used to construct selective hybridization probes via finely designed toehold and regulation of branching migration. Herein, we present a cooperative hybridization strategy relying on a dual-toehold and bulge-loop (DT&BL) probe, coupled with the strand displacement catalytic (SDC) cycle to identify SNVs. The dual-toehold can simultaneously hybridize the 5' and 3' ends of the target, so that it possessed the mutual correction function for improving the specificity in comparison with the single target-binding domain. Insertion of BLs into the dual-toehold probe allows tuning of Gibbs free energy change (ΔG) and control of the reaction rate during branching migration. Using the SDC cycle, the reactivity and selectivity of the DT&BL probe were increased drastically without elaborate competitive sequences. The feasibilities of this platform were demonstrated by the identification of three cancer-related genes. Moreover, the applicability of this biosensor to detect clinical samples showed satisfactory accuracy and reliability. We envision it would offer a new perspective for the construction of highly specific probes based on dynamic DNA nanotechnology, and serves as a promising tool for clinical diagnostics.
Keywords: Branching migration; Cooperative hybridization; DNA strand Displacement circuit; Nucleic acid probes; Single-nucleotide variants.
Copyright © 2022 Elsevier B.V. All rights reserved.