Cyclin-dependent kinase 1 (CDK1) plays an important role in cancer development, progression, and the overall process of tumorigenesis. However, no pan-cancer analysis has been reported for CDK1, and the predictive role of CDK1 in immune checkpoint inhibitors (ICIs) therapy response remains unexplored. Thus, in this study, we first investigated the potential oncogenic role of CDK1 in 33 tumors by multidimensional bioinformatics analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatic analysis and immunohistochemical experiments confirmed that CDK1 is significantly upregulated in most common cancers and is strongly associated with prognosis. Further analysis indicated that CDK1 may influence tumor immunity mainly by mediating the degree of tumor infiltration of immune-associated cells, and the effect of CDK1 on immunity is diverse across tumor types in tumor microenvironment. CDK1 was also positively correlated with tumor mutational burden (TMB) and microsatellite instability (MSI) in certain cancer types, linking its expression to the assessment of possible treatment response. The results of the pan-cancer analysis study showed that the CDK1 gene was positively associated with the expression of three classes of RNA methylation regulatory proteins, and affects RNA function through multiple mechanisms of action and plays an important role in the posttranscriptional regulation of the tumor microenvironment. These findings shed light on the role of the CDK1 gene in cancer progression and provide information to further study the CDK1 gene as a potential target for pan-cancer.
Copyright © 2022 Yaqi Yang et al.