Cisplatin resistance is one of the major obstacles in the treatment of nonsmall cell lung cancer (NSCLC). Kangai injection (KAI), a Chinese herbal medicine, has been used in tumors as adjuvant treatment, but its exact antitumor mechanism is still unclear. In this study, we first demonstrated that cisplatin-resistant A549/DDP cells showed a higher level of basal autophagy in response to cisplatin treatment with increasing autophagic protein expression levels of Beclin 1, p62, and LC3 compared to cisplatin-sensitive A549/DDP cells; then, we assessed the antitumor effect of KAI in cisplatin-resistant lung adenocarcinoma A549/DDP cells. Our results showed that KAI exhibited direct cytotoxic and chemosensitizing effects in A549/DDP cells. Combining KAI with cisplatin promoted A549/DDP cell apoptosis, which was confirmed by cell cycle arrest, condensed nuclear chromatin, annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, and apoptosis-related protein expression. In addition, combining KAI with cisplatin induced autophagic cell death in A549/DDP cells with a high level of basal autophagy, as indicated by an increase in LC3 spot count, an accumulation of Beclin 1 and LC3 II, and reduced p62 protein expression. We also found that the apoptosis and autophagic cell death induced by cotreatment of KAI and cisplatin in A549/DDP cells were FOXO3a-dependent as indicated by decreased p-FOXO3a expression and increased FOXO3a nuclear localization, respectively. Furthermore, the FOXO3a gene knockdown assay further confirmed that KAI enhanced cisplatin cytotoxicity in A549/DDP cells with a high level of basal autophagy by inducing apoptosis and autophagic cell death in a FOXO3a-dependent manner. These findings suggest that the combination of KAI and cisplatin might support the potential clinical treatment as a novel strategy to overcome cisplatin resistance.
Copyright © 2022 Huan Zhou et al.