Tuning the Interface of Co1- xS/Co(OH)F by Atomic Replacement Strategy toward High-Performance Electrocatalytic Oxygen Evolution

ACS Nano. 2022 Sep 27;16(9):15460-15470. doi: 10.1021/acsnano.2c07588. Epub 2022 Sep 12.

Abstract

The construction of heterostructures is one of the most promising strategies for engineering interfaces of catalysts to perform high-efficiency oxygen evolution reaction (OER). However, accurately tuning heterostructures' interface during operation remains a challenge. Herein, we fabricated the needled-like heterostructure Co1-xS/Co(OH)F supported on flexible carbon fiber cloth via an atomic substitution strategy, in which sulfur atoms are simultaneously grafted into F vacancies after the partial removal of F atoms from Co(OH)F during the electrodeposition, thus achieving the growth of cobalt sulfide on the interface of Co(OH)F. This electrocatalyst with such design exhibits the following advantages: (1) The lattice distortion caused by atomic substitution leads to the increase of active sites; (2) Co1-xS constructed on the surface of Co(OH)F by the atomic replacement strategy optimizes the adsorption (OH-) and desorption (O2) energy in the OER process; (3) the needle-like structure possesses the tip-enhanced local electric field effect. As a result, the Co1-xS/Co(OH)F/CC catalyst exhibits very high OER catalytic performance with an overpotential of 269 mV at a current density of 10 mA cm-2 and a Tafel slope of 71 mV dec-1. The asymmetric electrode shows superior catalytic activity and stability in overall water splitting. The catalytic mechanism of these highly efficient Co1-xS/Co(OH)F/CC catalysts was investigated via DFT theoretical calculations and ex situ characterizations. This atomic substitution strategy displays universality for other transition metal sulfides (metal = Ni, Mn, Cu).

Keywords: atomic replacement; electrocatalysis; heterostructures; interface tuning; lattice distortion; oxygen evolution reaction.