Background: Breast cancer remains the most common malignancy in females around the world. Recently, a growing number of studies have focused on gene dysregulation. In our previous study, Krüppel-like factors (KLFs) were found to play essential roles in breast cancer development, among which KLF2 could function as a tumor suppressor. Nevertheless, the underlying molecular mechanism remains unclear.
Methods: miR-92a-3p was identified as the upstream regulator of KLF2 by starBase v.3.0. The regulation of KLF2 by miR-92a-3p was verified by a series of in vitro and in vivo assays. Further exploration revealed that Baculoviral IAP Repeat Containing 5 (BIRC5) was the target of KLF2. ChIP assay, dual-luciferase reporter analysis, quantitative real-time PCR, and western blot were performed for verification.
Results: miR-92a-3p functioned as a tumor promoter by inhibiting KLF2 by binding to its 3'-untranslated region (3'-UTR). In addition, KLF2 could transcriptionally suppress the expression of BIRC5.
Conclusion: Collectively, our results uncovered the miR-92a-3p/KLF2/BIRC5 axis in breast cancer and provided a potential mechanism for breast cancer development, which may serve as promising strategies for breast cancer therapy.
Keywords: BIRC5; KLF2; breast cancer; miR-92a-3p; proliferation.
© 2022 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.