Opsariichthys bidens belongs to the family Cyprinidae and is a small freshwater economic fish widely distributed in China. In recent years, the natural resources of O. bidens have been drastically reduced due to overfishing and the destruction of the water environment. The in vitro culture and long-term preservation of germ stem cells are the key technologies to keep genetic resources from degeneration. However, except for the establishment of the first long-term cultured medaka spermatogonia cell line (SSC) capable of producing sperm in vitro in 2004, no other long-term cultured SSC line has been found in other fish species. In this study, we successfully established another long-term-cultured spermatogonial stem cell line from Opsariichthys bidens (ObSSC). After more than 2 years of culture, ObSSC had a diploid karyotype and stable growth, with the typical gene expression patterns of SSC. Under in vitro culture, ObSSC could be induced to differentiate into sperm and other different types of somatic cells. In vivo, ObSSC could differentiate into different cells of three germ layers upon being transplanted into zebrafish embryos. Our research helps to explore the potential and regulation mechanism of fish SSC differentiation and spermatogenesis in vitro, provides a new way for solving the problem of fish genetic resource degradation and lays a foundation for further research on fish germ cell transplantation.
Keywords: Opsariichthys bidens; cell transplantation technology; cryopreservation; differentiation; in vitro spermatogenesis; spermatogonia stem cell line.