Sulfanilamide, a widely used antibacterial drug, has been brought into the gas phase using laser ablation techniques, and its structure has been characterized in the isolated conditions of a supersonic expansion using Fourier transform microwave techniques. A single conformer stabilized by an N-H⋯OS intramolecular interaction in an equatorial disposition has been unequivocally characterized. To emulate the microsolvation process, we studied its hydrated cluster. The results show that a single water molecule alters the conformational preference and forces sulfanilamide to switch from its initial eclipsed configuration to a staggered disposition. The observed hydrated cluster adopts a structure in which water forms three hydrogen bonds with sulfanilamide stabilizing the molecule.