Industrial Seedling Raising (ISR) is increasingly becoming an important part of Modern Agriculture because of its efficient utilization of land, water, and fertilizer as well as its advantages of being not easily affected by the weather. However, the high cost and high energy consumption of light sources for plant growth is limiting the popularization of ISR technology. Phosphor-converted light-emitting diodes (pc-LEDs) make use of relatively affordable red phosphor and blue light chips, providing an adjustable spectrum to optimize plant growth. To identify the energy-saving light quality of pc-LEDs, we investigated the effects of a variety of light qualities on the growth of tobacco seedlings. Y3Al5O12:Ce3+, CaAlSiN3:Eu2+, KAl11O17:Eu2+ phosphors were combined with the blue light chip according to different proportions to produce the following light sources: CK (white light), T1 (blue light), T2 (red light), T3 (red: blue light ratio = 1:4), T4 (red: blue light ratio = 4:1). The tobacco variety Xiangyan7 grown continuously under T1, T2, T3, and T4 significantly increased the leaf area, stem length, biomass, root area and main root length compared with those grown under white light. Among the five kinds of light qualities tested, T4 treatment exerted the best effect on leaf development and biomass increase, while T2 exerted the best effect on stem elongation. The cytological analysis demonstrated that the promotion of the cell size and cell number of leaf epidermal cells by T1-T4 might contribute to the leaf expansion. Further analysis at the molecular level suggested that the light quality affected the RNA levels of the genes involved in cell division and expansion. When tobacco seedlings reached the same biomass, T1-T4 light sources saved 71%, 86%, 80% and 89% of electric energy respectively compared with white light. Therefore, the application of specific pc-LEDs not only reduces the cost of light source production, but also saves energy consumption, offering great potential for ISR technology to cut costs and increase efficiency.
Keywords: Energy saving; Factory nursery; Pc-LEDs; Tobacco.
Copyright © 2022. Published by Elsevier B.V.