Prrx1 promotes resistance to temozolomide by upregulating ABCC1 and inducing vasculogenic mimicry in glioma

Am J Cancer Res. 2022 Aug 15;12(8):3892-3912. eCollection 2022.

Abstract

Gliomas are the most common primary brain tumors with dismal prognoses. Temozolomide (TMZ), the frontline therapeutic agent for gliomas, has shown limited clinical benefit primarily due to the acquired chemoresistance. Although growing evidence has suggested that the multi-drug resistance phenotype and abnormal vascular microenvironment are responsible for the intrinsic and extrinsic TMZ resistance, the molecular mechanism of TMZ resistance remains to be elucidated. In this study, we found Paired-related homeobox 1 (Prrx1) was an independent prognostic factor for the efficacy of chemotherapy-based postoperative treatment. Silencing Prrx1 markedly enhanced the TMZ-induced cytotoxicity both in vitro and in vivo. We also demonstrated that Prrx1 increased the expression of ABCC1, a member of ATP-Binding Cassette (ABC) transporter protein family, through binding to the promoter region of ABCC1 gene and initiating its transcription. Silencing ABCC1 mitigated the TMZ resistance induced by Prrx1. Furthermore, Prrx1 facilitates the formation of vasculogenic mimicry (VM), a critical extrinsic mechanism for glioma TMZ resistance. Collectively, our findings supported the critical role of Prrx1 in TMZ resistance via intrinsic and extrinsic mechanism. Targeting Prrx1 might represent a feasible strategy to overcome therapeutic resistance in glioma.

Keywords: ABCC1; MDR; Prrx1; TMZ resistance; vasculogenic mimicry.