Penalized estimation of frailty-based illness-death models for semi-competing risks

Biometrics. 2023 Sep;79(3):1657-1669. doi: 10.1111/biom.13761. Epub 2022 Oct 24.

Abstract

Semi-competing risks refer to the time-to-event analysis setting, where the occurrence of a non-terminal event is subject to whether a terminal event has occurred, but not vice versa. Semi-competing risks arise in a broad range of clinical contexts, including studies of preeclampsia, a condition that may arise during pregnancy and for which delivery is a terminal event. Models that acknowledge semi-competing risks enable investigation of relationships between covariates and the joint timing of the outcomes, but methods for model selection and prediction of semi-competing risks in high dimensions are lacking. Moreover, in such settings researchers commonly analyze only a single or composite outcome, losing valuable information and limiting clinical utility-in the obstetric setting, this means ignoring valuable insight into timing of delivery after preeclampsia has onset. To address this gap, we propose a novel penalized estimation framework for frailty-based illness-death multi-state modeling of semi-competing risks. Our approach combines non-convex and structured fusion penalization, inducing global sparsity as well as parsimony across submodels. We perform estimation and model selection via a pathwise routine for non-convex optimization, and prove statistical error rate results in this setting. We present a simulation study investigating estimation error and model selection performance, and a comprehensive application of the method to joint risk modeling of preeclampsia and timing of delivery using pregnancy data from an electronic health record.

Keywords: multi-state model; risk prediction; semi-competing risks; structured sparsity; time-to-event analysis; variable selection.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Female
  • Frailty*
  • Humans
  • Models, Statistical
  • Pre-Eclampsia*