Photoacclimation of the polar diatom Chaetoceros neogracilis at low temperature

PLoS One. 2022 Sep 20;17(9):e0272822. doi: 10.1371/journal.pone.0272822. eCollection 2022.

Abstract

Polar microalgae face two major challenges: 1- growing at temperatures (-1.7 to 5°C) that limit enzyme kinetics; and 2- surviving and exploiting a wide range of irradiance. The objective of this study is to understand the adaptation of an Arctic diatom to its environment by studying its ability to acclimate to changes in light and temperature. We acclimated the polar diatom Chaetoceros neogracilis to various light levels at two different temperatures and studied its growth and photosynthetic properties using semi-continuous cultures. Rubisco content was high, to compensate for low catalytic rates, but did not change detectably with growth temperature. Contrary to what is observed in temperate species, in C. neogracilis, carbon fixation rate (20 min 14C incorporation) equaled net growth rate (μ) suggesting very low or very rapid (<20 min) re-oxidation of the newly fixed carbon. The comparison of saturation irradiances for electron transport, oxygen net production and carbon fixation revealed alternative electron pathways that could provide energy and reducing power to the cell without consuming organic carbon which is a very limiting product at low temperatures. High protein contents, low re-oxidation of newly fixed carbon and the use of electron pathways alternative to carbon fixation may be important characteristics allowing efficient growth under those extreme environmental conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / metabolism
  • Diatoms*
  • Oxygen
  • Ribulose-Bisphosphate Carboxylase / metabolism
  • Temperature

Substances

  • Carbon
  • Ribulose-Bisphosphate Carboxylase
  • Oxygen

Grants and funding

We thank funding contributions to the research from Takuvik IRL, ArcticNet (Network of Centres of Excellence of Canada), the Canada Excellence Research Chair in Remote Sensing of Canada's New Arctic Frontier (MB), NSERC Discovery (DAC, MB, AMC), the Canada Research Chair program (DAC, ND) and the Québec-Océan FRQNT strategic network (PIM, PLG, JL, TL, MB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript