The preparation of composite materials is a promising methodology for concurrent optimization of electrical and thermal transport properties for improved thermoelectric (TE) performance. This study demonstrates how the acoustic impedance mismatch (AIM) and the work function of components decouple the TE parameters to achieve enhanced TE performance of the (1-z)Ge0.87Mn0.05Sb0.08Te-(z)WC composite. The simultaneous increase in the electrical conductivity (σ) and Seebeck coefficient (α) with WC (tungsten carbide) volume fraction (z) results in an enhanced power factor (α2σ) in the composite. The rise in σ is attributed to the creation of favorable current paths through the WC phase located between grains of Ge0.87Mn0.05Sb0.08Te, which leads to increased carrier mobility in the composite. Detailed analysis of the obtained electrical properties was performed via Kelvin probe force microscopy (work function measurement) and atomic force microscopy techniques (spatial current distribution map and current-voltage (I-V) characteristics), which are further supported by density functional theory (DFT) calculations. Furthermore, the difference in elastic properties (i.e., sound velocity) between Ge0.87Mn0.05Sb0.08Te and WC results in a high AIM, and hence, a large interface thermal resistance (Rint) between the phases is achieved. The correlation between Rint and the Kapitza radius depicts a reduced phonon thermal conductivity (κph) of the composite, which is explained using the Bruggeman asymmetrical model. Moreover, the decrease in κph is further validated by phonon dispersion calculations that indicate the decrease in phonon group velocity in the composite. The simultaneous effect of enhanced α2σ and reduced κph results in a maximum figure of merit (zT) of 1.93 at 773 K for (1-z)Ge0.87Mn0.05Sb0.08Te-(z)WC composite for z = 0.010. It results in an average thermoelectric figure of merit (zTav) of 1.02 for a temperature difference (ΔT) of 473 K. This study shows promise to achieve higher zTav across a wide range of composite materials.
Keywords: Kapitza radius; Kelvin probe force microscope; acoustic impedance mismatch; composite thermoelectrics; density functional theory; interface thermal resistance; work function.