Integration of Pharmacokinetics, Pharmacodynamics, Safety, and Efficacy into Model-Informed Dose Selection in Oncology First-in-Human Study: A Case of Roblitinib (FGF401)

Clin Pharmacol Ther. 2022 Dec;112(6):1329-1339. doi: 10.1002/cpt.2752. Epub 2022 Oct 18.

Abstract

Model-informed dose selection has been drawing increasing interest in oncology early clinical development. The current paper describes the example of FGF401, a selective fibroblast growth factor receptor 4 (FGFR4) inhibitor, in which a comprehensive modeling and simulation (M&S) framework, using both pharmacometrics and statistical methods, was established during its first-in-human clinical development using the totality of pharmacokinetics (PK), pharmacodynamic (PD) biomarkers, and safety and efficacy data in patients with cancer. These M&S results were used to inform FGF401 dose selection for future development. A two-compartment population PK (PopPK) model with a delayed 0-order absorption and linear elimination adequately described FGF401 PK. Indirect PopPK/PD models including a precursor compartment were independently established for two biomarkers: circulating FGF19 and 7α-hydroxy-4-cholesten-3-one (C4). Model simulations indicated a close-to-maximal PD effect achieved at the clinical exposure range. Time-to-progression was analyzed by Kaplan-Meier method which favored a trough concentration (Ctrough )-driven efficacy requiring Ctrough above a threshold close to the drug concentration producing 90% inhibition of phospho-FGFR4. Clinical tumor growth inhibition was described by a PopPK/PD model that reproduced the dose-dependent effect on tumor growth. Exposure-safety analyses on the expected on-target adverse events, including elevation of aspartate aminotransferase and diarrhea, indicated a lack of clinically relevant relationship with FGF401 exposure. Simulations from an indirect PopPK/PD model established for alanine aminotransferase, including a chain of three precursor compartments, further supported that maximal target inhibition was achieved and there was a lack of safety-exposure relationship. This M&S framework supported a dose selection of 120 mg once daily fasted or with a low-fat meal and provides a practical example that might be applied broadly in oncology early clinical development.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alanine Transaminase
  • Computer Simulation
  • Dose-Response Relationship, Drug
  • Humans
  • Models, Biological
  • Piperazines* / pharmacology
  • Pyridines*

Substances

  • roblitinib
  • Piperazines
  • Pyridines
  • Alanine Transaminase