Mutational Landscape and Expression of PD-L1 in Patients with Non-Small Cell Lung Cancer Harboring Genomic Alterations of the MET gene

Target Oncol. 2022 Nov;17(6):683-694. doi: 10.1007/s11523-022-00918-6. Epub 2022 Sep 22.

Abstract

Background: Mesenchymal-to-epithelial transition (MET) exon 14 skipping mutations and MET gene amplification occur in 3-5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) targeting MET alterations have shown promising results in these patients.

Objective: The aim of this study was to describe the genomic profile, PD-L1 expression and clinicopathological features of MET dysregulated NSCLC.

Patients and methods: We identified 188 patients with advanced-stage NSCLC with data on MET expression by immunohistochemistry (IHC). IHC for PD-L1 expression was performed in 131 patient samples, and next-generation sequencing (NGS) analysis was performed in 109 patient samples.

Results: MET exon 14 skipping alterations were identified in 16 (14.7%) samples, MET amplifications with cut-off ≥4 copy number variations were identified in 11 (10.1%) samples, and an oncogenic MET mutation (MET p.D1228N) was identified in 1 (0.9%) sample. 12/15 tumors (80.0%) harboring MET exon 14 alterations and 7/11 (63.6%) MET-amplified tumors expressed PD-L1 in ≥1% of tumor cells. Tumors harboring MET exon 14 skipping alterations expressed PD-L1 more frequently than MET wild-type IHC-positive tumors (p = 0.045). Twenty-five percent of MET exon 14-altered cases and 33% of MET-amplified cases harbored potentially targetable oncogenic co-mutations in KRAS, BRAF, and EGFR. The most frequent co-occurring mutations in all MET-altered tumors were TP53, KRAS, BRAF, and CDK4.

Conclusions: We demonstrated that MET exon 14 skipping alterations and MET amplification are not mutually exclusive to other oncogenic co-mutations, and report the association of genomic MET alterations with PD-L1 expression. Since genomic MET alterations are emerging targets requiring upfront treatment, optimal understanding of the co-mutational landscape for this patient population is needed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • B7-H1 Antigen / genetics
  • B7-H1 Antigen / metabolism
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • DNA Copy Number Variations
  • Genomics
  • Humans
  • Lung Neoplasms* / pathology
  • Mutation
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins c-met / genetics
  • Proto-Oncogene Proteins c-met / metabolism
  • Proto-Oncogene Proteins p21(ras) / metabolism

Substances

  • B7-H1 Antigen
  • Proto-Oncogene Proteins B-raf
  • Proto-Oncogene Proteins p21(ras)
  • Proto-Oncogene Proteins c-met