Unsuppressed HIV viral load is an important marker of sustained HIV transmission. We investigated the prevalence, predictors, and high-risk areas of unsuppressed HIV viral load among HIV-positive men and women. Unsuppressed HIV viral load was defined as viral load of ≥400 copies/mL. Data from the HIV Incidence District Surveillance System (HIPSS), a longitudinal study undertaken between June 2014 to June 2016 among men and women aged 15−49 years in rural and peri-urban KwaZulu-Natal, South Africa, were analysed. A Bayesian geoadditive regression model which includes a spatial effect for a small enumeration area was applied using an integrated nested Laplace approximation (INLA) function while accounting for unobserved factors, non-linear effects of selected continuous variables, and spatial autocorrelation. The prevalence of unsuppressed HIV viral load was 46.1% [95% CI: 44.3−47.8]. Predictors of unsuppressed HIV viral load were incomplete high school education, being away from home for more than a month, alcohol consumption, no prior knowledge of HIV status, not ever tested for HIV, not on antiretroviral therapy (ART), on tuberculosis (TB) medication, having two or more sexual partners in the last 12 months, and having a CD4 cell count of <350 cells/μL. A positive non-linear effect of age, household size, and the number of lifetime HIV tests was identified. The higher-risk pattern of unsuppressed HIV viral load occurred in the northwest and northeast of the study area. Identifying predictors of unsuppressed viral load in a localized geographic area and information from spatial risk maps are important for targeted prevention and treatment programs to reduce the transmission of HIV.
Keywords: Bayesian; South Africa; geoadditive model; integrated nested Laplace approximation (INLA); non-linear effect; small enumeration area; spatial effect; unsuppressed HIV viral load.