Cortical Source Analysis of the Face Sensitive N290 ERP Component in Infants at High Risk for Autism

Brain Sci. 2022 Aug 25;12(9):1129. doi: 10.3390/brainsci12091129.

Abstract

Appropriate head models for cortical source analysis were investigated and applied to source analyses examining the neural bases of the face-sensitive N290 event-related potential (ERP) component in infants at high risk for autism spectrum disorder (ASD). This included infant siblings of children with ASD (ASIBs) and infants with fragile X syndrome (FXS). First, alternative head models for use with ASIBs and FXS were investigated. Head models created from the infant's own MRI were examined in relation to five head models based on average MRI templates. The results of the head model comparison identified group-specific (i.e., ASIB or FXS) head models created from a large collection of structural MRIs as the best substitution for the head model created from the participant's own structural MRI. Second, the cortical source analysis was completed on N290 data collected from a previous study to investigate brain areas associated with face sensitive ERP responses. Participants' own MRIs were used for head models when available, and the group-specific head model was used when the participants' own MRIs were not available. The results provide evidence for unique patterns of neural activation during face processing across infants at high and low risk for ASD and across etiologically distinct high-risk groups. All infants demonstrated greater activation to faces than toys in brain areas most associated with specialized face processing. Infants with FXS displayed higher levels of activation to faces across all areas analyzed, while ASIBs show more muted levels of activation. Overall, the results of the current study demonstrate the importance of group-specific head models for accurate cortical source analysis in infants at high risk for ASD. This also allows for further research on early distinctions in brain function based on risk status.

Keywords: autism spectrum disorder; cortical source analysis; event-related potentials; face processing.