Molybdenum trioxide has served as a promising cathode material of rechargeable magnesium batteries (RMBs), because of its rich valence states and high theoretical capacity; yet, it still suffers from sluggish (de)intercalation kinetics and inreversible structure change for highly polarized Mg2+ in the interlayer and intralayer of structure. Herein, F- substitutional and H+ interstitial doping is proposed for α-MoO3 materials (denoted HMoOF) by the intralayer/interlayer engineering strategy to boost the performance of RMBs. F- substitutional doping generates molybdenum vacancies along the Mo-O-□ or Mo-F-□ configurations (where □ represents the cationic vacancy) for unlocking the inactive basal plane of the layered crystal structure, and it further accelerates Mg2+ diffusion along the b-axis. Interstitial-doped H+ can expand interlayer spacing for reducing Mg2+ energy barrier along the ac plane and serve as a "pillar" to stabilize the interlayer structure. Moreover, anion and cation dual doping trigger shallow impurity levels (acceptors levels and donor levels), which helps to easily acquire the electrons from the valence band and donate the electrons to the conduction band. Consequently, the HMoOF electrode exhibits a high reversible capacity (241 mA h g-1 at 0.1 A g-1), an excellent rate capability (137.4 mAh g-1 at 2 A g-1), and a long cycling stability (capacity retention of 98% after 800 cycles at 1 A g-1) in RMBs. This work affords meaningful insights in layered materials for developing high-kinetics and long-life RMBs.
Keywords: expand interlayer spacing; interstitial doping; rechargeable magnesium batteries; substitutional doping; unlocking inactive basal plane.