The analytical performance of the microarray technique in screening the affinity and reactivity of molecules toward a specific target is highly affected by the coupling chemistry adopted to bind probes to the surface. However, the surface functionality limits the biomolecules that can be attached to the surface to a single type of molecule, thus forcing the execution of separate analyses to compare the performance of different species in recognizing their targets. Here, we introduce a new N,N-dimethylacrylamide-based polymeric coating, bearing simultaneously different functionalities (N-acryloyloxysuccinimide and azide groups) to allow an easy and straightforward method to co-immobilize proteins and oriented peptides on the same substrate. The bifunctional copolymer has been obtained by partial post-polymerization modification of the functional groups of a common precursor. This strategy represents a convenient method to reduce the number of analyses, therefore possible systematic or random errors, besides offering a drastic shortage in time, reagents, and costs.
Keywords: Click chemistry; Co-immobilization; Functional polymers; Peptide microarray; Protein microarray.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.