Ca2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis

Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2204574119. doi: 10.1073/pnas.2204574119. Epub 2022 Sep 26.

Abstract

Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.

Keywords: CPK21/23-Arabidopsis; Ca2+-NRAMP1; Manganese.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Calcium* / metabolism
  • Cation Transport Proteins* / genetics
  • Cation Transport Proteins* / metabolism
  • Homeostasis
  • Manganese* / metabolism
  • Micronutrients / metabolism
  • Phosphorylation
  • Plant Roots / metabolism
  • Protein Kinases* / genetics
  • Protein Kinases* / metabolism
  • Saccharomyces cerevisiae / metabolism
  • Soil

Substances

  • Arabidopsis Proteins
  • Cation Transport Proteins
  • Micronutrients
  • NRAMP1 protein, Arabidopsis
  • Soil
  • Manganese
  • Protein Kinases
  • calcium-dependent protein kinase 21, Arabidopsis
  • Calcium