This study characterized the chemical composition of particulate matter (PM) from light- (LDV) and heavy-duty (HDV) vehicles based on two traffic tunnel samplings carried out in the megacity of São Paulo (Brazil), which has >7 million vehicles and intense biofuel use. The samples were collected with high-volume samplers and analyzed using chemical characterization techniques (ion and gas chromatography, thermal-optical analysis, and inductively coupled plasma mass spectroscopy). Chemical source profiles (%) were calculated based on the measurements performed inside and outside the tunnels. Identifying a high abundance of Fe and Cu for traffic-related PM in the LDV-impacted tunnel was possible, linked with the emission of vehicles powered by ethanol and gasohol (gasoline and ethanol blend). We calculated diagnostic ratios (e.g., EC/Cu, Fe/Cu, pyrene/benzo[a]pyrene, pyrene/benzo[b]fluoranthene, and fluoranthene/benzo[b]fluoranthene) characteristic of fuel exhausts (diesel/biodiesel and ethanol/gasohol), allowing their use in the assessment of the temporal variation of the fuel type used in urban sites. Element diagnostic ratios (Cu/Sb and Fe/Cu) pointed to the predominance of LDVs exhaust-related copper and can differentiate LDVs exhaust from brake wear emissions. The carbonaceous fraction EC3 was suggested as an HDV emission tracer. A higher total polycyclic aromatic hydrocarbons (PAHs) fraction of traffic-related PM2.5 was observed in the HDV-impacted tunnel, with a predominance of diesel-related pyrene and fluoranthene, as well as higher oxy-PAHs (e.g., 9,10-anthraquinone, associated with biodiesel blends) abundances. However, carcinogenic species presented higher abundances for the LDV-impacted tunnel (e.g., benzo[a]pyrene). These findings highlighted the impact of biofuels on the characteristic ratios of chemical species and pointed to possible markers for LDVs and HDVs exhausts.
Keywords: Biofuels; Heavy-duty vehicles; Light-duty vehicles; PAHs; Particulate matter.
Copyright © 2022 Elsevier B.V. All rights reserved.