Impact of Loading and Myocardial Mechanical Properties on Natural Shear Waves: Comparison to Pressure-Volume Loops

JACC Cardiovasc Imaging. 2022 Dec;15(12):2023-2034. doi: 10.1016/j.jcmg.2022.07.011. Epub 2022 Sep 14.

Abstract

Background: Shear wave elastography (SWE) has been proposed as a novel noninvasive method for the assessment of myocardial stiffness, a relevant determinant of diastolic function. It is based on tracking the propagation of shear waves, induced, for instance, by mitral valve closure (MVC), in the myocardium. The speed of propagation is directly related to myocardial stiffness, which is defined by the local slope of the nonlinear stress-strain relation. Therefore, the operating myocardial stiffness can be altered by both changes in loading and myocardial mechanical properties.

Objectives: This study sought to evaluate the capability of SWE to quantify myocardial stiffness changes in vivo by varying loading and myocardial tissue properties and to compare SWE against pressure-volume loop analysis, a gold standard reference method.

Methods: In 15 pigs, conventional and high-frame rate echocardiographic data sets were acquired simultaneously with pressure-volume loop data after acutely changing preload and afterload and after inducting an ischemia/reperfusion (I/R) injury.

Results: Shear wave speed after MVC significantly increased by augmenting preload and afterload (3.2 ± 0.8 m/s vs 4.6 ± 1.2 m/s and 4.6 ± 1.0 m/s, respectively; P = 0.001). Preload reduction had no significant effect on shear wave speed compared to baseline (P = 0.118). I/R injury resulted in significantly higher shear wave speed after MVC (6.1 ± 1.2 m/s; P < 0.001). Shear wave speed after MVC had a strong correlation with the chamber stiffness constant β (r = 0.63; P < 0.001) and operating chamber stiffness dP/dV before induction of an I/R injury (r = 0.78; P < 0.001) and after (r = 0.83; P < 0.001).

Conclusions: Shear wave speed after MVC was influenced by both acute changes in loading and myocardial mechanical properties, reflecting changes in operating myocardial stiffness, and was strongly related to chamber stiffness, invasively derived by pressure-volume loop analysis. SWE provides a novel noninvasive method for the assessment of left ventricular myocardial properties.

Keywords: diastolic function; high–frame rate echocardiography; myocardial stiffness; pressure-volume loops; shear wave elastography.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Elasticity Imaging Techniques*
  • Mitral Valve*
  • Predictive Value of Tests
  • Swine