Subconjunctival Lymphatics Respond to VEGFC and Anti-Metabolites in Rabbit and Mouse Eyes

Invest Ophthalmol Vis Sci. 2022 Sep 1;63(10):16. doi: 10.1167/iovs.63.10.16.

Abstract

Purpose: To characterize and pharmacologically influence subconjunctival lymphatics in rabbit and mouse eyes.

Methods: Rabbits received subconjunctival injections of trypan blue or fixable fluorescent dextrans. Bleb-related outflow pathways were quantified. Immunofluorescence for vessel-specific markers (lymphatics [podoplanin and LYVE-1] and blood vessels [CD31]) were performed in native rabbit conjunctiva and after fixable fluorescent dextran injection. Vascular endothelial cell growth factor-C (VEGFC) was injected subconjunctivally in rabbits. mRNA and protein were assessed for the above markers using RT-PCR and Western blot. Alternatively, mouse studies used Prox1-tdTomato transgenic reporter mice. Subconjunctival injection conditions included: no injection, balanced salt solution (BSS), VEGFC, 5-fluorouracil (5FU) and two concentrations of mitomycin-C (MMC). Two mouse injection protocols (short and long) with different follow-up times and number of injections were performed. Mouse eyes were enucleated, flat mounts created, and subconjunctival branching and length assessed.

Results: Rabbit eyes demonstrated clear bleb-related subconjunctival outflow pathways that were distinct from blood vessels and were without nasal/temporal predilection. Immunofluorescence against vessel-specific markers showed lymphatics and blood vessels in rabbit conjunctiva, and these lymphatics overlapped with bleb-related subconjunctival outflow pathways. Subconjunctival VEGFC increased lymphatic (P = 0.004-0.04) but not blood vessel (P = 0.77-0.84) mRNA or protein in rabbits. Prox1-tdTomato transgenic reporter mice demonstrated natively fluorescent lymphatics. Subconjunctival VEGFC increased murine lymphatic branching and length (P ≤ 0.001-0.004) while antimetabolites (P ≤ 0.001-0.043) did the opposite for the long protocol.

Discussion: Subconjunctival lymphatics are pharmacologically responsive to both VEGFC and antimetabolites in two animal models studied using different methodologies. These results may be important for bleb-forming glaucoma surgeries or ocular drug delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimetabolites / pharmacology
  • Conjunctiva
  • Dextrans
  • Fluorouracil / pharmacology
  • Glaucoma* / surgery
  • Intraocular Pressure
  • Mice
  • Mitomycin* / pharmacology
  • RNA, Messenger / genetics
  • Rabbits
  • Trypan Blue / pharmacology

Substances

  • Antimetabolites
  • Dextrans
  • Fluorouracil
  • Mitomycin
  • RNA, Messenger
  • Trypan Blue