The facile ring contraction of [CoCp‴(η4-P4)] and [Ta(CO)2Cp″(η4-P4)] to [CoCp‴(η3-P3)][(MeNHC)2P] and [Ta(CO)2Cp″(η3-P3)] [(MeNHC)2P] induced by MeNHC and the absence of the ring contraction of [FeCp*(η5-P5)] under the same conditions are studied by density functional theory (DFT) computations. The latter is estimated to be thermodynamically the least favorable reaction and also has a very high energy barrier. The similar strain energies of P3 and P4 rings and the lower strain energy of the P5 ring play a decisive role in the ring contraction capability of these [TM-cyclo-Pn] complexes. Theoretical approaches involving NBO and IBO analysis have been employed to provide a qualitative picture of the overall reactions. The role of substituents and the nature of transition metals in determining the energetics of these reactions has also been studied and an isolobal perspective on these systems affords a simplified picture.