The interaction between son of sevenless 1 (SOS1) gene and Kirsten rat sarcoma viral oncogene (KRAS) is crucial for activating signals of proliferation and survival in a range of cancers. We previously discovered compound 40a with a tetracyclic quinazoline pharmacophore as a potent orally bioavailable SOS1 inhibitor. Herein, we disclosed the discovery of compound 13c, which substituted the third ring with the seven-membered ring, as a clinical drug candidate for suppressing KRAS-driven tumors. 13c strongly disrupted the protein-protein interaction between SOS1 and KRAS with low IC50 values of 3.9 nM (biochemical) and 21 nM (cellular). 13c showed a favorable pharmacokinetic profile with a bioavailability of 86.8% in beagles and exhibited 83.0% tumor suppression in Mia-paca-2 pancreas xenograft mice tumor models. 13c exhibited a weak time-dependent CY3A4P inhibition than BI-3406, thereby reducing the risk of drug-drug interaction in drug combination. Toxicological investigations revealed that 13c had a lower risk of sudden cardiac death than BI-3406. Overall, 13c has been under evaluation in preclinical trials.