Synaptic terminals are the primary sites of neuronal communication. Synaptic dysfunction is a hallmark of many neuropsychiatric and neurological disorders. The characterization of synaptic sub-compartments by biochemical isolation is, therefore, a powerful method to elucidate the molecular bases of synaptic processes, both in health and disease. This protocol describes the isolation of synaptic terminals and synaptic sub-compartments from mouse brains by subcellular fractionation. First, sealed synaptic terminal structures, known as synaptosomes, are isolated following brain tissue homogenization. Synaptosomes are neuronal pre- and post-synaptic compartments with pinched-off and sealed membranes. These structures retain a metabolically active state and are valuable for studying synaptic structure and function. The synaptosomes are then subjected to hypotonic lysis and ultracentrifugation to obtain synaptic sub-compartments enriched for synaptic vesicles, synaptic cytosol, and synaptic plasma membrane. Fraction purity is confirmed by electron microscopy and biochemical enrichment analysis for proteins specific to sub-synaptic compartments. The presented method is a straightforward and valuable tool for studying the structural and functional characteristics of the synapse and the molecular etiology of various brain disorders.