Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion

Nat Microbiol. 2022 Nov;7(11):1849-1856. doi: 10.1038/s41564-022-01207-8. Epub 2022 Oct 3.

Abstract

Defence-associated sirtuins (DSRs) comprise a family of proteins that defend bacteria from phage infection via an unknown mechanism. These proteins are common in bacteria and harbour an N-terminal sirtuin (SIR2) domain. In this study we report that DSR proteins degrade nicotinamide adenine dinucleotide (NAD+) during infection, depleting the cell of this essential molecule and aborting phage propagation. Our data show that one of these proteins, DSR2, directly identifies phage tail tube proteins and then becomes an active NADase in Bacillus subtilis. Using a phage mating methodology that promotes genetic exchange between pairs of DSR2-sensitive and DSR2-resistant phages, we further show that some phages express anti-DSR2 proteins that bind and repress DSR2. Finally, we demonstrate that the SIR2 domain serves as an effector NADase in a diverse set of phage defence systems outside the DSR family. Our results establish the general role of SIR2 domains in bacterial immunity against phages.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteriophages* / genetics
  • Bacteriophages* / metabolism
  • NAD* / metabolism
  • NAD+ Nucleosidase
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae / genetics
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae / metabolism
  • Sirtuin 2 / genetics

Substances

  • NAD
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae
  • Sirtuin 2
  • NAD+ Nucleosidase