Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells

BMB Rep. 2023 Feb;56(2):78-83. doi: 10.5483/BMBRep.2022-0095.

Abstract

Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment. [BMB Reports 2023; 56(2): 78-83].

Publication types

  • News

MeSH terms

  • Apoptosis
  • Cell Death
  • Drug Resistance, Neoplasm
  • Echinomycin* / therapeutic use
  • Fusion Proteins, bcr-abl / genetics
  • Fusion Proteins, bcr-abl / metabolism
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-akt
  • Tyrosine Kinase Inhibitors

Substances

  • 2-amino-3-(4'-N,N-bis(2-chloroethyl)amino)phenylpropionic acid N-oxide
  • Tyrosine Kinase Inhibitors
  • Fusion Proteins, bcr-abl
  • Echinomycin
  • Proto-Oncogene Proteins c-akt
  • Protein Kinase Inhibitors

Grants and funding

ACKNOWLEDGEMENTS This work was supported in part by a Grant-in-Aid for Scientific Research (C) (Grant numbers 20K07145 and 20K07168) from the Japan Society for the Promotion of Science (JSPS).