Chronic wounds have negative physical and psychological effects on patients and increase the health care burden. Consequently, chronic wound in the elderly population is an important issue. Ultrasound can be a great modality for treating chronic wounds because of its noninvasive and safety characteristics; it can accelerate in vitro and in vivo wound healing. In this study, we developed a novel noncontact ultrasound for wound treatment. We stimulated human epidermal keratinocyte migration using low-intensity pulsed ultrasound (LIPUS) with a noncontact transducer to avoid direct contact with the wound. We also compared the effects of 15-min contact and noncontact transducer stimulation, where a 1-MHz contact transducer (intensity = 40 or 200 mW/cm2) and a 0.45-MHz noncontact transducer (intensity = 30 mW/cm2) were used. Both contact and noncontact LIPUS considerably increased cell migration and activated the calcium (Ca2+)-dependent transcription factors cAMP-responsive element-binding protein (CREB) and nuclear factor of activated T cells (NFAT). Furthermore, noncontact transducer stimulation did not cause cell death or affect cell proliferation but significantly increased the Ca2+ influx-mediated intracellular Ca2+ levels. Ca2+-free medium and Ca2+ channel blockers effectively inhibited LIPUS-induced Ca2+-dependent transcription factor activation and cell migration.
Keywords: Ca(2+)-dependent transcription factors; Cell migration; Noncontact low-intensity pulsed ultrasound; Therapeutic ultrasound.
Copyright © 2022 Elsevier B.V. All rights reserved.