Findings pertaining to sex differences in the acquisition and extinction of threat conditioning, a paradigm widely used to study emotional homeostasis, remain inconsistent, particularly in humans. This inconsistency is likely due to multiple factors, one of which is sample size. Here, we pooled functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) data from multiple studies in healthy humans to examine sex differences during threat conditioning, extinction learning, and extinction memory recall. We observed increased functional activation in males, relative to females, in multiple parietal and frontal (medial and lateral) cortical regions during acquisition of threat conditioning and extinction learning. Females mainly exhibited higher amygdala activation during extinction memory recall to the extinguished conditioned stimulus and also while responding to the unconditioned stimulus (presentation of the shock) during threat conditioning. Whole-brain functional connectivity analyses revealed that females showed increased connectivity across multiple networks including visual, ventral attention, and somatomotor networks during late extinction learning. At the psychophysiological level, a sex difference was only observed during shock delivery, with males exhibiting higher unconditioned responses relative to females. Our findings point to minimal to no sex differences in the expression of conditioned responses during acquisition and extinction of such responses. Functional MRI findings, however, show some distinct functional activations and connectivities between the sexes. These data suggest that males and females might use different neural mechanisms, mainly related to cognitive processing, to achieve comparable levels of acquired conditioned responses to threating cues.
© 2022 Wen et al.; Published by Cold Spring Harbor Laboratory Press.