Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences

Trends Parasitol. 2022 Dec;38(12):1031-1040. doi: 10.1016/j.pt.2022.09.004. Epub 2022 Oct 5.

Abstract

Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.

Keywords: drug resistance; epidemiology; parasite–vector interactions; sporogony; transmission; within-vector dynamics.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antimalarials* / therapeutic use
  • Culicidae* / parasitology
  • Humans
  • Malaria* / parasitology
  • Parasites*

Substances

  • Antimalarials