Brain age gap in neuromyelitis optica spectrum disorders and multiple sclerosis

J Neurol Neurosurg Psychiatry. 2023 Jan;94(1):31-37. doi: 10.1136/jnnp-2022-329680. Epub 2022 Oct 10.

Abstract

Objective: To evaluate the clinical significance of deep learning-derived brain age prediction in neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting multiple sclerosis (RRMS).

Methods: This cohort study used data retrospectively collected from 6 tertiary neurological centres in China between 2009 and 2018. In total, 199 patients with NMOSD and 200 patients with RRMS were studied alongside 269 healthy controls. Clinical follow-up was available in 85 patients with NMOSD and 124 patients with RRMS (mean duration NMOSD=5.8±1.9 (1.9-9.9) years, RRMS=5.2±1.7 (1.5-9.2) years). Deep learning was used to learn 'brain age' from MRI scans in the healthy controls and estimate the brain age gap (BAG) in patients.

Results: A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 years) groups compared with healthy controls. A higher baseline disability score and advanced brain volume loss were associated with increased BAG in both patient groups. A longer disease duration was associated with increased BAG in RRMS. BAG significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD and RRMS.

Conclusions: There is a clear BAG in NMOSD, although smaller than in RRMS. The BAG is a clinically relevant MRI marker in NMOSD and RRMS.

Keywords: MRI; multiple sclerosis; neuroimmunology; neuroradiology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain / diagnostic imaging
  • Cohort Studies
  • Humans
  • Multiple Sclerosis* / diagnostic imaging
  • Multiple Sclerosis, Relapsing-Remitting* / diagnostic imaging
  • Neuromyelitis Optica* / diagnostic imaging
  • Retrospective Studies