Guanine nucleotide-binding protein-like 3-like protein (GNL3L) is a novel, evolutionarily conserved, GTP-binding nucleolar protein. This study aimed to investigate the expression, prognosis, and immune value of GNL3L in pan-cancer from multiple omics analyses. Firstly, the expression and prognostic value of GNL3L in pan-cancer were discussed using the TIMER2 database, the GEPIA database, the cBioportal database, COX regression analysis, and enrichment analysis. The association of GNL3L with tumor mutational burden (TMB), tumor microsatellite instability (MSI), mismatch repair (MMR) genes, and immune cells was then analyzed. Finally, an esophageal cancer (ESCA) prediction model was established, and GNL3L clone formation assays were performed. The final results showed that GNL3L is differentially expressed in the vast majority of cancers, is associated with the prognosis of various cancers, and may affect cancer occurrence through processes such as ribonucleoprotein, ribosomal RNA processing, and cell proliferation. At the same time, it was found that the correlation between GNL3L and TMB, MSI, MMR, and various immune cells is significant. The established ESCA prediction model had a strong predictive ability, and GNL3L could significantly affect the proliferation of esophageal cancer cells. In conclusion, GNL3L may serve as an important prognostic biomarker and play an immunomodulatory role in tumors.
Keywords: GNL3L; immune; multi-omics; pan-cancer; prognostic analysis.