Utilization of food-waste-derived bioactive compounds with biodegradable polymers is an attractive strategy leading innovation in the food packaging sector and contributing to reduce the environmental concerns of plastic packaging disposal. In this field, this work is aimed to use hazelnut perisperm as an antioxidant agent in the production of biodegradable polymeric films for active packaging applications. For this purpose, hazelnut perisperm of a selected particle size (<250 μm) at different percentages (0%, 5% and 10% by weight) was added to a bioderived and compostable polymer suitable for food contact, known as Ecovio®. The blends were produced by a twin-screw extrusion process, while active films were prepared with a pilot lab-scale film blowing plant. The films were characterized in terms of physical−mechanical properties (thermal, tensile, oxygen barrier, optical, sealing ability) and antioxidant activity (DPPH), to investigate their potential use as active packaging. The results showed that the presence of the hazelnut perisperm confers significant antioxidant activity to the films, which is useful in counteracting lipid oxidation and preserve the quality of lipophilic foods, e.g., nut-dried fruits. An extension of the sealability temperature range of the films without compromising their strength was also highlighted. Moreover, the hazelnut perisperm causes a gradual decrease in the stiffness and mechanical strength of the films and an increase in the ductility of the system.
Keywords: PLA/PBAT blends; active packaging; antioxidant activity; biodegradable film; food packaging; hazelnut perisperm.