Deep Learning in Thyroid Ultrasonography to Predict Tumor Recurrence in Thyroid Cancers

Taehan Yongsang Uihakhoe Chi. 2020 Sep;81(5):1164-1174. doi: 10.3348/jksr.2019.0147. Epub 2020 Apr 23.

Abstract

Purpose: To evaluate a deep learning model to predict recurrence of thyroid tumor using preoperative ultrasonography (US).

Materials and methods: We included representative images from 229 US-based patients (male:female = 42:187; mean age, 49.6 years) who had been diagnosed with thyroid cancer on preoperative US and subsequently underwent thyroid surgery. After selecting each representative transverse or longitudinal US image, we created a data set from the resulting database of 898 images after augmentation. The Python 2.7.6 and Keras 2.1.5 framework for neural networks were used for deep learning with a convolutional neural network. We compared the clinical and histological features between patients with and without recurrence. The predictive performance of the deep learning model between groups was evaluated using receiver operating characteristic (ROC) analysis, and the area under the ROC curve served as a summary of the prognostic performance of the deep learning model to predict recurrent thyroid cancer.

Results: Tumor recurrence was noted in 49 (21.4%) among the 229 patients. Tumor size and multifocality varied significantly between the groups with and without recurrence (p < 0.05). The overall mean area under the curve (AUC) value of the deep learning model for prediction of recurrent thyroid cancer was 0.9 ± 0.06. The mean AUC value was 0.87 ± 0.03 in macrocarcinoma and 0.79 ± 0.16 in microcarcinoma.

Conclusion: A deep learning model for analysis of US images of thyroid cancer showed the possibility of predicting recurrence of thyroid cancer.

목적: 수술 전 초음파 검사에서 갑상선 종양의 재발을 예측할 수 있는 심층 학습 모델을 개발하고자 한다.

대상과 방법: 수술 전 초음파에서 병리학적으로 확진된 갑상선 수술을 받은 229명의 환자(남성:여성 = 42:187, 평균 연령, 49.6세)의 대표적인 초음파 이미지를 포함시켰다. 각각 대표적인 횡축 또는 종축 초음파 이미지가 선택되었다. 신경 네트워크용 Python 2.7.6 및 Keras 2.1.5, convolutional neural network을 사용한 심층 학습이 사용되었다. 재발한 환자와 재발이 없는 환자의 임상 및 조직학적 특징을 비교하였다. 그룹 간의 심층 학습 모델의 receiver operating characteristic curve 곡선 아래의 영역은 재발 갑상선암을 예측하기 위한 심층 학습모델의 예측에 사용되었다.

결과: 전체 환자 229명 중 49명이 종양 재발(21.4%)을 보였다. 종양의 크기, 다원성은 재발이 없는 군과 재발 군에서 유의한 차이가 있었다(p < 0.05). 재발성 갑상선암 예측을 위한 심층학습 모델의 전반적인 평균 area under the curve (이하 AUC) 값은 0.9 ± 0.06이었다. 평균 AUC는 macrocarcinoma에서 0.87 ± 0.03, microcarcinoma에서 0.79 ± 0.16이었다.

결론: 갑상선암의 초음파 이미지를 이용한 심층 학습 모델로 갑상선암 재발의 예측 모델 구축의 가능성을 보여주었다.

Keywords: Deep Learning; Recurrence; Thyroid Cancer, Papillary; Ultrasonography.