Germ-free (GF) animals and animal models of the antibiotic disruption of gut microbiota are widely used to explore studies of gut microbiota-host interactions. The role of gut microbiota in bone growth and development has been well explained in studies on GF mice, indicating that changes in the gut microbiota may affect normal bone developmental processes. The mechanisms, however, are yet unclear. This study aims to clarify the effect of antibiotic treatment disrupting the gut microbiota on bone development in mice and investigate the possible causes of this effect. Our results show that long-term antibiotic feeding significantly alters gut microbiota composition in mice, reduces the bone mineral density of the spinal region, and leads to changes in trabecular microstructure. Interestingly, we found a significant decrease in the serum estrogen levels in mice treated with antibiotics, suggesting that gut microbiota may affect bone quality by regulating serum estrogen levels. These results may help understand how gut ecological dysregulation affects sex hormones and provide a new conception for the clinical treatments of osteoporosis.
Keywords: Antibiotic; bone; estrogen; intestinal microbiota; osteoporosis.
AJTR Copyright © 2022.