Introduction: Neuroendocrine cells release Catestatin (CST) from Chromogranin A (CgA) to regulate stress responses. As regards COVID-19 patients (COVID+) requiring oxygen supply, to date nobody has studied CST as a potential mediator in the regulation of immunity.
Patients & methods: Admission plasma CST and CgA - its precursor - concentrations were measured (ELISA test) in 73 COVID+ and 27 controls. Relationships with demographics, comorbidities, disease severity and outcomes were analysed (Mann-Whitney, Spearman correlation tests, ROC curves).
Results: Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24 standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in COVID+ than in controls (1.6 [1.02; 3.79] vs 0.87 [0.59; 2.21] ng/mL, p<0.03), with no difference between COVID+ and COVID-ICU+. There was no difference between groups in either CgA or CST/CgA ratios, but these parameters were lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or usual inflammation-related parameters. In-hospital mortality was similar whether COVID+ or not, but COVID+ had longer oxygen support and more complications (p<0.03). CST concentrations and the CST/CgA ratio were associated with in-hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with care-related infections (p<0.001).
Conclusion: Respiratory COVID patients release significant amounts of CST in the plasma making this protein widely available for the neural regulation of immunity. If confirmed prospectively, plasma CST will reliably help in predicting in-hospital mortality, whereas CgA will facilitate the detection of patients prone to care-related infections.
Keywords: COVID; Catestatin; Chromogranin A; Innate immunity; critically ill; hypoxia; nosocomial disease.
Copyright © 2022 Schneider, Le Borgne, Herbrecht, Danion, Solis, Hellé, Betscha, Clere-Jehl, Lefebvre, Castelain, Goumon and Metz-Boutigue.